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ABSTRACT: 
The present paper examines a new procedure for estimating Young‘s modulus and Poisson‘s ratio of 

homogeneous materials constituting the one-layer thin tubes. The work is done from the use of the time-

frequency representation. Spectrogram and its reassigned version have been chosen to analyze 

experimentally acoustic signals backscattered by air-filled tubes immersed in water. For reduced 

frequencies ranging from 0.1 to 500, time-frequency images have shown the presence of the Symmetrical 

and the Antisymmetrical waves. Satisfactory resolution and good localization in the time-frequency plane 

have been observed in the case of concentrated spectrogram. Reduced cutoff frequencies of A1 and S1 

waves have also been extracted from Spectrogram and concentrated Spectrogram time-frequency images. A 

good agreement has, therefore, been observed. Comparisons with results obtained by experiment indicate 

that mechanical parameters such as Young‘s modulus and Poisson‘s ratio of aluminum and copper are 

evaluated accurately. 

Keywords: Young’s modulus; Isotropic elasticity; Acoustic scattering; one-layer cylindrical tube; Time-

frequency representation; Proper modes theory.   

 

I. INTRODUCTION 
The guided waves become in recent years an 

important tool in non-destructive characterization and 

have been utilized in many applications [1-11]. The 

longitudinal and the transversal waves in structures 

are the main choice for computation of the elastic 

deformation characteristics. However, relatively few 

studies have focused on mechanical / elastic 

properties of isotropic materials constituting plaques 

or circular cylindrical thin tubes, using the time-

frequency representation (TFR). In this paper, we aim 

to measure the mechanical parameters of air-filled 

thin tubes immersed in water. The time-frequency 

representation, which is essentially an energy 

distribution in the time- frequency (t,) plane, has 

proven to be an effective tool for analyzing the non-

stationary signals [12-13]. The most popular analysis 

tools in many cases are the spectrogram and Wigner-

Ville [14- 15]. This work presents the application of 

Spectrogram (Sp) and concentrated spectrogram 

(CSp) to study  acoustic signals backscattered by thin 

aluminum and copper tubes of inner over outer radii 

ratio denoted by b/a . CSp representation is motivated 

by a desire to get the best localization and resolution 

of the time-frequency analysis. Firstly; the 

Spectrogram is applied for making a preparative 

time-frequency analysis. Then, CSp representation is 

used for a fine frequency resolution.  

The organization of the paper is as follows; In 

Section I, we briefly describe the acquisition of 

experimental acoustic signals and give examples 

related to our study. In Section II, we introduce 

background of time-frequency representations. In 

Section III, we give the Hooke‘s law, and expressions 

of Young‘s modulus and Poisson‘s ratio parameters 

of homogeneous materials. In Section IV, we present 

the time-frequency images, and estimate in detail, 

Young‘s modulus and Poisson‘s ratio values of 

aluminum and copper. The results obtained are fully 

discussed. Finally, conclusion is given.   

 

1. Backscattering by an air-filled thin 

tube 
1. Experimental setup 

The experimental system, shown in Fig. 1, is 

constituted of a pulse generator Sofranel 5052PR, a 

digital oscilloscope LeCroy 9310M -300MHz, a 

personal computer, a transducer and an air-filled tube 

immersed in water. The water density ρw is equal to 

1g.cm
-3

. The acoustic velocity wave cw, measured at 
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the ambient temperature 20°C, is equal to 1,470 

mm.μs
-1

. The broadband transducer of a 10MHz 

central frequency and a 10mm diameter, placed 

opposite of the tube, is utilized successively as 

emitter and receiver. It is excited by a short pulse 

generated by the pulse generator. Samples used are 

thin aluminum and copper tubes. The inner over outer 

radius ratio b/a approaches 1. 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.  General geometry of backscattering by an-air filled tube immersed in water. 

 

II. Experimental filtered signals for the studied shells 
Fig.2 shows four examples of experimental signals backscattered by aluminum and copper tubes of inner 

over outer radii ratio equal to 0.90 , 0.95, 0.93 and 0.94 respectively. The impulse responses are composed of a 

sequence of echoes that are related to guided waves propagating around circumferences of the targets. On the 

same figure, we can observe several waveform packets with low amplitude that are associated to the A Scholte 

wave and various guided waves designed by S0 , A1 , S1 ,  etc.  
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Fig. 2: Experimental signals backscattered by thin tubes: (a): aluminum 0.90  ; (b): aluminum 0.95; (c): copper 

0.93  ; (d): copper 0.94. 

 

III. SPECTROGRAM (SP) AND CONCENTRATED SPECTROGRAM (CSP) 
SP and CSP representations are chosen to study acoustic signals backscattered by air-filled one-layer 

cylindrical tubes immersed in water [12-15]. CSP is motivated by many advantages, especially that it is linear; 

which simplifies the interpretation of the transform and has an inverse representation that ensures the possibility 

of the analyzed signal reconstruction [15-18].  

 

1. Spectrogram 

Short-time Fourier transform (STFT) is defined as [14], 

( , ) ( ) ( )exp( 2 ( / 1/ 2))STFT l k s l m h m i m k K  
(1) 

Where s is the signal needed to analyze; k=0,1,...,K-1; l=0,1,…,L-1; n=0,1,…N-1;M is the width of the window 

h(m). L depends on the entire signal length N, and K is the length of the single running Discrete Fourier 

transform.   
The energy of each STFT line is calculated as follows: 

    

2
( ) ( , )SP l k STFT l k                                                                  (2) 

Theoretically, SP representation has a poor time-frequency resolution. 

 

2. Reassigned Spectrogram 

The computation of the time-frequency coordinates for each STFT line and the new locations are 

obtained by calculating local group delay as, 

( , ) ( ( , ) ( , 1)) /(2 )eT l k Arg STFT l k STFT l k K F                                                         (3) 

And channelized instantaneous frequency as, 

( , ) ( ( , ) ( 1, )) /(2 )eF l k Arg STFT l k STFT l k F                                                            (4) 

Where STFT
 

 is the complex conjugate of STFT and Arg denotes the argument of a complex number, Fe 

marks sampling rate. Relocated coordinates are obtained by [15-18],
 

( , ) ( ( , ), ( , ))l k lt t T l k F l k    

tl is the delay of l
th

 frame and k  is the frequency of center k
th

 channel. 

The energy of each STFT line is determined by, 
2

( ) ( , )CSP l k STFT l k 
                                                                                     

(5) 
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IV. YOUNG’S MODULUS 
1. Elastic constants 

By The most general linear relationship which connects stress to strain is provided by the generalized 

version of the well-known Hooke‘s law [19], 

.C                                                                  (6) 

In which σ denotes the stress tensor,  the strain tensor and the elements of the fourth-order tensor C are the 

so-called elastic constants. The elastic constants are fundamental materials parameters providing detailed 

information on the mechanical properties of materials. The knowledge of these data may enable prediction 

of mechanical behavior in many different situations. 

For an isotropic, homogeneous, linearly elastic material, the theory of elasticity demonstrates that 

it is possible to reduce the 21 components of the C tensor to two material constants (λ and μ) which are 

called the Lamé constants [19].  

The phase velocities of the longitudinal and shear waves are respectively [20], 

2
Lc

 




                                                                             (7) 

Tc



                                                                                   (8) 

Where ρ denotes the density; its values for aluminum and copper are equal to 2,800 g.cm
-3

 and 8,920 g.cm
-3

 

successively. 

Young‘s modulus and Poisson‘s ratio are expressed in function of the above quantities by [20], 
2 2

2

2 2

3 4L T
T

L T

c c
E c

c c






                                                                     (9) 

2 2

2 2

2

2( )

L T
p

L T

c c

c c






                                                                   (10) 

 

2. Case of a thin tube 

At any given value of reduced frequency x=2πa/cw , guided waves can be generated in the tube 

characterized by inner over outer radii ratio (b/a). 

The phase velocity is directly related to the ratio b/a and the reduced cutoff frequency xc  as [21], 

1(1 ) ( )w
T c

c b
c x A

a
                                                                          (11) 

1(1 ) ( )w
L c

c b
c x S

a
                                                                           (12) 

 Where A1and S1 are the antisymmetrical and the symmetrical waves respectively. 

 

V. RESULTS AND DISCUSSIONS 
1. Time-frequency images 

SP and CSP given successively by the Eq. 2 and Eq. 5 are utilized in the work. Time- frequency images of the 

acoustic signal backscattered by aluminum and copper one-layer tubes are presented in Fig. 3 and Fig. 4. A1 and 

S1 waves are indicated in the above figures. Reduced cutoff frequencies for these mentioned waves are 

estimated by the asymptotic lines along the time axis, and presented in the table I. 
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Fig. 3: Spectrogram images of experimental signals of Fig. 2 :  (a): aluminum 0.90  ; (b): aluminum 0.95  ; (c): 

copper 0.93  and (d): copper 0.94. 
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Fig. 4: Concentrated spectrogram images of experimental signals of Fig. 2 :  (a): aluminum 0.90  ; (b): 

aluminum 0.95  ; (c): copper 0.93  and (d): copper 0.94. 

 

Table I: Reduced cutoff frequency values of A1 and S1 waves 

Guided waves 

 

A1 wave  

 

S1 wave  

Representations Spectrogram 
Concentrated 

Spectrogram 
Spectrogram 

Concentrated 

Spectrogram 

Aluminum (b/a= 0,90) 64,5         65         133       134,2 

Aluminum (b/a= 0,95) 130       130,6       267,5       268 

Copper (b/a= 0,93) 69,5         70,1         139,5       140 

Copper  (b/a= 0,94) 81,5         82,2         163       164 

From  Fig. (3), it is seen that the frequency resolution is affected.  

 From  Fig. (4), it is found that time-frequency resolution is better when using CSp. It allows a 

better readability of guided waves that are propagated around each tube. 

 

2. Estimation of Young’s modulus and Poisson’s ratio of aluminum and copper 
 In this paper, reduced cutoff frequencies for A1 and S1 waves are extracted in SP and CSP images. Then, the 

phase velocity of shear and longitudinal waves are rapidly evaluated, relatively to the aluminum and the copper, 

using Eq. (11) and Eq. (12); results are presented in Table II. 

 

Table II: Phase velocities of shear and longitudinal waves (mm.µs
-1

).  

Phase velocities 

 

cT   

 

cL  

Representations Spectrogram 
Concentrated 

Spectrogram 
Spectrogram 

Concentrated 

Spectrogram 

Aluminum (b/a= 0,90) 3,020         3,043         6,226       6,283 

Aluminum (b/a= 0,95) 3,043         3,057         6,262       6,273 

Copper (b/a= 0,93) 2,278         2,297         4,572       4,588 

Copper  (b/a= 0,94) 2,289         2,309         4,578       4,607 

 

Finally, Young‘s modulus and Poisson‘s ratio of aluminum and copper are determined, using Eq. (9) and Eq. 

(10). Estimated values are presented in Table III. 
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Table III: Estimated Young‘s modulus (GPa) and Poisson‘s ratio of aluminum and copper.  

 

 

Spectrogram   

 

Concentrated Spectrogram Experiment 

E P E P E P 

Aluminum (b/a= 0,90) 69,8 0,347 68,8 0,346 69,0 0,340 

Aluminum (b/a= 0,95) 69,8 0,345 70,3 0,344 69,0 0,340 

Copper (b/a= 0,93) 125,4 0,334 123,6 0,332 124,0 0,330 

Copper  (b/a= 0,94) 126,7 0,333 124,6 0,332 124,0 0,330 

 

Briefly exploring the results in Table III, we 

have shown that Spectrogram and Concentrated 

Spectrogram representations are advantageous. 

Mechanical parameters of aluminum and copper such 

as Young‘s modulus and Poisson‘s ratio are 

calculated with good precision (less than 1 %). 

 

VI. CONCLUSION 
In this paper, we have demonstrated that the 

study of acoustic signals backscattered by air-filled 

one-layer cylindrical tubes, immersed in water, 

provides the mechanical properties (Young‘s 

modulus and Poisson‘s ratio) of homogeneous solid 

materials. The analysis of time-frequency images, 

toward normalized frequencies ranging from 0.1 to 

500, shows the guided waves propagation. Reduced 

cutoff frequencies of A1 and S1 waves are extracted 

from Spectrogram and concentrated Spectrogram 

time-frequency images. Young‘s modulus and 

Poisson‘s ratio of aluminum and copper are estimated 

accurately. 
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